
Audit
SPL Governance v3

Presented by:

OtterSec contact@osec.io

Robert Chen notdeghost@osec.io

Kevin Chow kchow@osec.io

mailto:contact@osec.io
mailto:notdeghost@osec.io
mailto:kchow@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Findings 3

03 Vulnerabilities 4
OS-GOV-ADV-00 [med] [resolved] | Voter weight manipulation by burning after vote 5

04 General Findings 7
OS-GOV-SUG-00 | Add safeguards/warnings to membership tokenminting/burning 8
OS-GOV-SUG-01 | Revoke membership should check and revoke votes 9

Appendices

A Procedure 10

B Implementation Security Checklist 11

C Vulnerability Rating Scale 13

© 2022 OtterSec LLC. All Rights Reserved. 1 / 13

01 | Executive Summary

Overview

Solana Labs engaged OtterSec to perform an assessment of spl-governance v3.

This is an ongoing assessment, but we delivered this intermediate report on September 12th, 2022.

Key Findings

The following is a summary of the major findings in this audit.

• 3 findings total
• 0 vulnerabilities which could lead to loss of funds

© 2022 OtterSec LLC. All Rights Reserved. 2 / 13

02 | Findings
Overall, we report 3 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings don’t have an immediate impact but will
help mitigate future vulnerabilities.

The below chart displays the findings by severity.

Severity Count

Critical 0
High 0

Medium 1
Low 0

Informational 2

© 2022 OtterSec LLC. All Rights Reserved. 3 / 13

03 | Vulnerabilities
Here we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix C.

ID Severity Status Description

OS-GOV-ADV-00 Medium Resolved Voter weight manipulation by burning

© 2022 OtterSec LLC. All Rights Reserved. 4 / 13

SPL Governance v3 Audit 03 | Vulnerabilities

OS-GOV-ADV-00 [med] [resolved] | Voter weight manipulation by burning after
vote

Description

A voter can influence their vote weight after voting ends and before proposal finalization. The voter
relinquishes his/her vote, withdraws their governing tokens, burns to lower themint supply (and therefore
max_voter_weight) and finalizes.

Proof of Concept

1. Deposit 33% of mint supply

2. Create a proposal and vote on it.

3. Between voting time ending and proposal finalization, relinquish vote and withdraw tokens. The
vote persists.

4. Burn withdrawn tokens (33%) and finalize. 33/66 = 50%

governance/program/src/processor/process_relinquish_vote.rs RUST

} else {
vote_record_data.is_relinquished = true;
vote_record_data.serialize(&mut

*vote_record_info.data.borrow_mut())?;↪→

}

// If the Proposal has been already voted on then we only have to
decrease unrelinquished_votes_count↪→

token_owner_record_data.unrelinquished_votes_count =
token_owner_record_data↪→

.unrelinquished_votes_count

.checked_sub(1)

.unwrap();

token_owner_record_data.serialize(&mut
*token_owner_record_info.data.borrow_mut())?;↪→

Ok(())

Remediation

Prevent vote relinquishment before the vote is finalized. Resolved in #3210.

© 2022 OtterSec LLC. All Rights Reserved. 5 / 13

https://github.com/solana-labs/solana-program-library/pull/3210

SPL Governance v3 Audit 03 | Vulnerabilities

governance/program/src/processor/process_relinquish_vote.rs RUST

} else {
// After Proposal voting time ends and it's not tipped then it

enters implicit (time based) Finalizing state↪→

// and releasing tokens in this state should be disallowed
// In other words releasing tokens is only possible once Proposal

is manually finalized using FinalizeVote↪→

if proposal_data.state == ProposalState::Voting {
return
Err(GovernanceError::CannotRelinquishInFinalizingState.into());↪→

}

vote_record_data.is_relinquished = true;
vote_record_data.serialize(&mut

*vote_record_info.data.borrow_mut())?;↪→

}
// If the Proposal has been already voted on then we only have to

decrease unrelinquished_votes_count↪→

token_owner_record_data.unrelinquished_votes_count =
token_owner_record_data↪→

.unrelinquished_votes_count

.checked_sub(1)

.unwrap();
token_owner_record_data.serialize(&mut

*token_owner_record_info.data.borrow_mut())?;↪→

Ok(())

© 2022 OtterSec LLC. All Rights Reserved. 6 / 13

04 | General Findings
Here we present a discussion of general findings during our audit. While these findings do not present
an immediate security impact, they do represent antipatterns and could introduce a vulnerability in the
future.

ID Description

OS-GOV-SUG-00 Add safeguards/warnings to membership

OS-GOV-SUG-01 Revoke membership should check and revoke votes

© 2022 OtterSec LLC. All Rights Reserved. 7 / 13

SPL Governance v3 Audit 04 | General Findings

OS-GOV-SUG-00 | Addsafeguards/warnings tomembership tokenminting/burn-
ing

Description

spl-governance issues membership tokens that never interact with a voter via an authority mint-
ing and burning tokens directly into a holding account. However, these actions are sensitive because
max_voter_weight is mint supply by default. Ideally these actions only occur when there are no live
proposals, and the ability to create new proposals is disabled. Additionally, a mint and/or burn series
should occur in a single transaction, or a minority could have more vote weight than intended.

governance/src/processor/process_deposit_governing_tokens.rs RUST

if is_spl_token_account(governing_token_source_info) {
// If the source is spl-token token account then transfer
tokens from it↪→

transfer_spl_tokens(
governing_token_source_info,
governing_token_holding_info,
governing_token_source_authority_info,
amount,
spl_token_info,

)?;
} else if is_spl_token_mint(governing_token_source_info) {

// If it's a mint then mint the tokens
mint_spl_tokens_to(

governing_token_source_info,
governing_token_holding_info,
governing_token_source_authority_info,
amount,
spl_token_info,

)?;
} else {

return
Err(GovernanceError::InvalidGoverningTokenSource.into());↪→

}

Remediation

The Solana Labs team communicated that they intend to support a queuing mechanism to enforce
proposal order in the future.

© 2022 OtterSec LLC. All Rights Reserved. 8 / 13

SPL Governance v3 Audit 04 | General Findings

OS-GOV-SUG-01 | Revoke membership should check and revoke votes

Description

When mint_authority revokes membership tokens, there should be a check for any live votes, and
the ability for a DAO to relinquish those votes.

governance/src/processor/process_revoke_governing_tokens.rs RUST

token_owner_record_data.governing_token_deposit_amount =
token_owner_record_data↪→

.governing_token_deposit_amount

.checked_sub(amount)

.ok_or(GovernanceError::InvalidRevokeAmount)?;

token_owner_record_data.serialize(&mut
*token_owner_record_info.data.borrow_mut())?;↪→

burn_spl_tokens_signed(
governing_token_holding_info,
governing_token_mint_info,
realm_info,
&get_realm_address_seeds(&realm_data.name),
program_id,
amount,
spl_token_info,

)?;

Remediation

The Solana Labs team has noted they intend to support vote relinquishment for DAOs in the future.

© 2022 OtterSec LLC. All Rights Reserved. 9 / 13

A | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an onchain program. In other words, there is no way to steal tokens or deny service,
ignoring any Solana specific quirks such as account ownership issues. An example of a design vulnerability
would be an onchain oracle which could bemanipulated by flash loans or large deposits.

On the other hand, auditing the implementation of the program requires a deep understanding of Solana’s
execution model. Some common implementation vulnerabilities include account ownership issues,
arithmetic overflows, and rounding bugs. For a non-exhaustive list of security issues we check for, see
Appendix B.

Implementation vulnerabilities tend to bemore “checklist” style. In contrast, design vulnerabilities require
a strong understanding of the underlying system and the various interactions: both with the user and
cross-program.

As we approach any new target, we strive to get a comprehensive understanding of the program first.
In our audits, we always approach any target in a team of two. This allows us to share thoughts and
collaborate, picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2022 OtterSec LLC. All Rights Reserved. 10 / 13

B | Implementation Security Checklist

Unsafe arithmetic

Integer underflows or
overflows

Unconstrained input sizes could lead to integer over or underflows, causing
potentially unexpected behavior. Ensure that for unchecked arithmetic, all
integers are properly bounded.

Rounding Rounding should always be done against the user to avoid potentially ex-
ploitable off-by-one vulnerabilities.

Conversions Rust as conversions can cause truncation if the source value does not fit into
the destination type. While this is not undefined behavior, such truncation
could still lead to unexpected behavior by the program.

Account security

Account Ownership Account ownership should be properly checked to avoid type confusion
attacks. For Anchor, the safety of unchecked accounts should be clearly
justified and immediately obvious.

Accounts For non-Anchor programs, the type of the account should be explicitly vali-
dated to avoid type confusion attacks.

Signer Checks Privileged operations should ensure that the operation is signed by the
correct accounts.

PDA Seeds PDA seeds are uniquely chosen to differentiate between different object
classes, avoiding collision.

© 2022 OtterSec LLC. All Rights Reserved. 11 / 13

SPL Governance v3 Audit B | Implementation Security Checklist

Input validation

Timestamps Timestamp inputs should be properly validated against the current clock
time. Timestamps which are meant to be in the future should be explicitly
validated so.

Numbers Sane limits should be put on numerical input data to mitigate the risk of
unexpected over and underflows. Input data should be constrained to the
smallest size type possible, and upcasted for unchecked arithmetic.

Strings Strings should have sane size restrictions to prevent denial of service condi-
tions

Internal State If there is internal state, ensure that there is explicit validation on the input
account’s state before engaging in any state transitions. For example, only
open accounts should be eligible for closing.

Miscellaneous

Libraries Out of date libraries should not include any publicly disclosed vulnerabilities

Clippy cargo clippy is an effective linter to detect potential anti-patterns.

© 2022 OtterSec LLC. All Rights Reserved. 12 / 13

C | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings can be found in the General Findings section.

Critical Vulnerabilities which immediately lead to loss of user funds with minimal precondi-
tions

Examples:

• Misconfigured authority/token account validation
• Rounding errors on token transfers

High Vulnerabilities which could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions
• Exploitation involving high capital requirement with respect to payout

Medium Vulnerabilities which could lead to denial of service scenarios or degraded usability.

Examples:

• Malicious input cause computation limit exhaustion
• Forced exceptions preventing normal use

Low Lowprobability vulnerabilitieswhich could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants
• Improved input validation
• Uncaught Rust errors (vector out of bounds indexing)

© 2022 OtterSec LLC. All Rights Reserved. 13 / 13

	Executive Summary
	Overview
	Key Findings

	Findings
	Vulnerabilities
	OS-GOV-ADV-00 [med] [resolved] | Voter weight manipulation by burning after vote

	General Findings
	OS-GOV-SUG-00 | Add safeguards/warnings to membership token minting/burning
	OS-GOV-SUG-01 | Revoke membership should check and revoke votes

	Appendices
	Procedure
	Implementation Security Checklist
	Vulnerability Rating Scale

